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Abstract

This paper studies how the costs and benefits of information acquisition affect a firm’s

investment, payout and welfare under incomplete information and imperfect learning.

Information gathering reduces estimation error, alleviates investment inefficiency, en-

courages higher payout and improves overall welfare. The cost incurred can overturn

the benefit generated and distort the optimal policies. However, the degree of dis-

tortion is state-dependent as the value of information is time-varying. Information is

more valuable whenever the investment environment is more volatile, the firm is more

sensitive to variations in the investment opportunity set, and the marginal utility of

consumption is high. The firm behaves myopically as beliefs gravitate toward extremes

and the value of information fades away.
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1 Introduction

The advent of the “Big Data” era has led to an unprecedented proliferation in data col-

lection and information acquisition. According to Curran (2019), the revenue of the U.S.

financial data service providers industry reached $15.4 billion in 2019 and is forecast to

grow at an annual rate of 2% in the next five years. The increasing importance of data

information, to some extent, can be attributed to the growing complexity and surging un-

certainty of the financial market, which induce participants to engage in a broader scale of

information search, especially through different information service intermediaries, in order

to facilitate better decision making under incomplete information. Examples are abundant.

Companies purchase consumer data for production and marketing purposes, institutional

investors hire proxy advisory firms for research and recommendations on their votes at

shareholder meetings, fund managers make portfolio decisions with the help from analyst

reports, and investors invest in mutual funds to draw on funds’ information advantage in

picking stocks.1 In all these contexts, information acquirers are bounded by limited infor-

mation. This information incompleteness gives rises to estimation risks and necessitates

learning and information acquisition.

The objective of this paper is to provide a general framework to study the motivation

and influence of information acquisition. While the traditional learning literature has docu-

mented the substantial influence of estimation risks on decisions making, this paper places

emphasis on the interaction between information acquisition and estimation risks. In par-

ticular, I investigate how the opportunity to acquire additional signals affects learning, how

the improvement in learning from information gathering alters corporate policies and how

these changes feed back into the decision to collect further information. To answer these

questions, this paper develops a dynamic learning model in which a firm determines the

investment and payout policies to maximize investors’ life-time utility in the presence of

incomplete information and imperfect learning.

1Extended empirical research shows that information acquisition affects different dimensions of financial
decision making. For the social media channel, see Antweiler and Frank (2004), Chen et al. (2014), among
others. For the analyst channel, see Jegadeesh et al. (2004), Morgan and Stocken (2003) and Huang, Zang
and Zheng (2014), among others. For proxy advisory firms, see Iliev and Lowry (2015), Larcker, McCall and
Ormazabal (2015), and Malenko and Shen (2016), among others. For newsletters, see Jaffe and Mahoney
(1999) and Metrick (1999).
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Information is incomplete in the sense that the expected rate of return of the risky asset

is unknown and evolves stochastically over time. In order to determine the risky investment,

the firm learns and estimates the unknown parameter from noisy realized returns. Learning

is stationary in that the information from realized returns is offset by new shocks to returns.

This means estimation errors persist, and such imperfect inference necessitates further in-

formation to improve the assessment of the risky asset. The firm can acquire an extra signal

to improve, although not perfectly, the inference process. Using continuous-time Kalman

filtering with multiple measurement equations, I show that the newly acquired signal en-

hances learning by providing a new information source and refining the understanding of

past return predictability. The value of information can be characterized by subsequent

comparison of the optimal policies under different information sets, i.e. comparing the case

without extra information aid and the case with additional signals.

Lack of accurate appraisal of the risky investment opportunity leads to inefficient invest-

ment. While a time-varying investment opportunity set induces a hedging need with respect

to changes in the investment environment, learning errors create an estimation-error hedging

demand. More importantly, the two hedging demands are interdependent. Information ac-

quisition alleviates investment inefficiencies by directly reducing the latter hedging demand

and indirectly altering the former one as it reduces the firm’s sensitivity towards changes in

the investment opportunity. The paper shows that there exists a switching threshold, mea-

sured in the level of estimated rate of return, below which the firm switches its investment

strategy from long to short. Without additional information aid, the firm switches earlier

in order to mitigate the estimation risk from holding the asset. Information acquisition

unambiguously reduces the threshold and expands the range where the firm is willing to

hold the asset. I show that the efficiency improvement effect is stronger for estimations that

are close to the switching threshold, where the estimated rate of return is relatively low,

and the influence of estimation risk is relatively high. The extra signal is needed to guide

both the sign (long or short) and the scale of the investment.

Reduction in inference error also encourages higher payout, and hence higher consump-

tion for the investors. Improvement in investment efficiency increases the firm’s ability

to smooth payout intertemporally for risk-averse investors. The firm becomes more confi-
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dent in the evaluation of the investment opportunity and therefore requires lower hedging

demand and precautionary savings to buffer against unanticipated shocks that can cause

unfavourable shifts in the future payout. Consequently, all else equal, the firm is willing to

pay out more, and the investors’ welfare improves as the information set expands, suggesting

“the more information, the better” for decision-making bounded by incomplete information

and imperfect learning. All of these are achieved under the premise of costless acquisition.2

I show that the cost of information acquisition undermines the efficiency-improvement

role of the additional signal and reduces the payout. In states where learning is less valuable,

the firm is forced to shrink investment to a level that is lower than what it would invest

without the costly signal, leading to greater underinvestment. In the states where the esti-

mation risk imposes a greater threat to the decision-making process (when the anticipated

rate of return is relatively low), the benefit outweighs the cost incurred. In other words,

the distortion effect, as well as the value of information acquisition, are state-dependent,

although the learning contribution of the signal is stationary.

To quantify the value of information, I further examine two measures: the certainty

equivalent of wealth for information (measured as a percentage of the total net worth) and

the cutoff cost (the upper bound of cost, measured as a percentage of the total amount

of investment); both capture the maximum cost the firm is willing to pay. All else equal,

learning accuracy is more valuable when the estimation risk has greater influence, which

occurs in bad times when the estimated rate of return from investment is low relative

to risks embedded; for example, when beliefs are located around the switching threshold.

Information is also valued more when the investment environment is more volatile. In these

scenarios, a small estimation error increases the possibility of unexpected changes that

could lead to unfavourable shifts in future payouts. More importantly, the marginal utility

of consumption is often high in these cases, meaning an unfavourable drop in consumption

has a more significant detrimental effect. As the estimations gravitate toward extremes, the

firm behaves myopically as high anticipated returns make learning a second-order concern,

reducing the value of information. To the best of my knowledge, the results regarding the

2Acquisition cost is an important consideration, especially for soft information. For example, Chen et al.
(2020) use the adoption of the high-speed train in China to show that reduction in acquisition cost results
in greater information production, more accurate analyst forecasts and better analyst recommendations.
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time-varying value of information are original.

The model generates predictions that are relevant to various aspects of financial eco-

nomics and reconciles empirical evidence (see Section 5). First, by studying the tradeoff

between the costs and benefits of active information collection, the model sheds light on the

active management industry and highlights the time-varying value created by information

service providers (e.g. active funds). On the one hand, the model implies that a high cost

can lead to ‘underperformance’ of active management.3 For example, for a 12% expected

rate of return, the model predicts that the maximum cost a risk averse investor is willing

to pay for a signal that improves learning accuracy by 16% is around 0.7% of the total

investment. Costs exceeding this boundary overtake the benefits, negating the value of in-

formation service. On the other hand, the model reveals that the beneficial effect is stronger

and dominates when the investment environment is more volatile, or when the investors are

more concerned about estimation risks. Hence, the ability to deliver a positive outcome

when it is needed the most (e.g. in a recession) justifies the choice of active investments.

Empirical research has documented the outperformance of active funds in recessions (Glode

(2011), Kacperczyk, Van Nieuwerburgh and Veldkamp (2014, 2016), and others). The model

thus provides an explanation for the still puzzling observation: investors engage in active

investment despite persistent underperformance after costs and widely available low-cost

passive alternatives.

Second, this paper also contributes to the recent discussion about how new information

technologies affect private information acquisition (see Gao and Huang (2018), Goldstein,

Yang and Zuo (2020), among others). My paper shows that whether public signals crowd

out or encourage private information production depends on the learning path and predicts a

time-varying explanatory power of public information on financial observations. The model

also generates a testable prediction that private information production is countercyclical –

the motivation to search for information increases (decreases) in bad (good) times. Third,

the model highlights the real effect of information acquisition. It shows that a firm’s in-

vestment and payout behavior reflects its confidence in the judgement of the investment

opportunity. This means that measures reducing information collection barriers can miti-

3Note that, in this paper, performance is measured in terms of investors’ welfare rather than the rate of
return as in the mutual fund literature.
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gate underinvestment and improve efficiency. Overall, the model generates rich implications

regarding firms’ or investors’ financial decisions as well as the real influence of information

intermediaries (e.g. brokers, active funds, consultants).

Let me conclude by briefly reviewing the related literature. This paper relates to a broad

literature on learning. This literature includes papers that examine how estimation risk

affects an investor’s asset allocation decisions (e.g. Williams (1977), Detemple (1986), Gen-

notte (1986), Brennan (1998), Kan and Zhou (2007) and others), and how the predictability

of stock returns influence the dynamics of portfolio choices, asset prices and volatility (e.g.

Barberis (2000), Xia (2001), Brandt et al. (2005), Johannes, Korteweg and Polson (2014)

among others).4 My paper differs from these studies in the following aspects. First, I focus

on the influence of information acquisition on learning, investment, payout and investors’

welfare, rather than the estimation risk itself. Instead of studying how incomplete infor-

mation affects financial decisions, this paper examines the roles of information-gathering

under incomplete information and persistent imperfect learning. Second, as distinct from

Barberis (2000) and Xia (2001), who study the relationship between predictability, invest-

ment horizon, and optimal portfolio choices, this paper refrains from the horizon effect by

incorporating stationary learning in an infinite-time setup. Such a setup allows us to fo-

cus on the long term value of information services and study the demand for information

intermediaries.

More broadly, this paper is related to the literature that studies how learning influ-

ences investment timing in a real-option framework.5 For example, Décamps, Mariotti,

4Note that this strand of literature adopts a traditional Bayesian approach to address estimation errors
and information updating. This means investors are ambiguity-neutral. Garlappi, Uppal and Wang (2006)
study the influence of estimation errors on portfolio choices by augmenting a static mean-variance portfolio
model with multiple priors and ambiguity aversion.

5The paper also links to the literature on real options under incomplete or asymmetric information, e.g.
Grenadier (1999), Lambrecht and Perraudin (2003), Hsu and Lambrecht (2007), Grenadier and Malenko
(2011) among others. These papers study the exercise of an option in different contexts of asymmetric
information among participants. Learning plays roles in extracting private information from the exercise
strategy of the other party, which, in turn, feed back into the timing decisions of the participants. In
particular, Grenadier (1999) studies how revealed information from the observed exercise decisions of peers
affects the dynamic equilibrium. He also explores the value of information services and shows that it is a
function of the value of the underlying asset and the signal. My paper focuses explicitly on the demand
side and assumes the supply side of the information is exogenously given. Learning takes place to extract
information from signals, and the paper places emphasis on how the motivation of information collection
varies over time.
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and Villeneuve (2005) and Klein (2008) find that with incomplete information, the optimal

exercising strategy is path-dependent. Grenadier and Malenko (2010) study the influence

of learning on investment timing when a firm is uncertain about both future and past

shocks. While the firm is uncertain about future shocks, it also fails to fully learn about

past shocks, which induces it to update beliefs as time goes by. Therefore, the real-option

value consists of value to delay and value to learn. Daley, Geelen and Green (2020) model

due diligence after the seller accept the acquirer’s bid as a real option problem. The buyer

has the right to acquire further information and decide whether to go ahead with the deal.

Compared to no information acquisition, due diligence enhances the total surplus as well as

the seller’s payoff. Unlike these papers, which focus on the timing of investment, this paper

emphasizes how the learning dynamics influence the intensity of investment in a canonical

investment-consumption framework and examines the dynamic interaction of information

acquisition, investment and payout. In this paper, the firm’s understanding of the past

return predictability is imperfect, and inference errors persist. The newly acquired signal

improves the understanding of predictability of past shocks. I show that the valuation of the

risky investment opportunity encapsulates the value of learning and the value of hedging.

The optimal investment strategy is state-dependent and, more interestingly, the influence

of information on the optimal policies is also time-varying.

The paper also links to the literature that studies dynamic corporate financial policies

featured with stationary learning (e.g. Acharya and Lambrecht (2015), DeMarzo and San-

nikov (2017) and He et al. (2017)). In particular, Acharya and Lambrecht (2015) build a

model to study income and payout smoothing when the insiders know more than the out-

siders about the firm’s marginal cost. Outsiders can only learn from a noisy latent signal

– sales. With the discrete Kalman filter approach, they show that incomplete inference

induces the manager to manipulate outsiders’ expectation by distorting the production de-

cision (real smoothing). In my paper, with the continuous-time Kalman filter, I study the

dynamics of investment and payout policies. Different from the above papers, the agent

maximizes the investors’ life-time utility; thus, there is no asymmetric information between

insiders and outsiders. I focus on the demand side of information, and take the supply side

as exogenously given. By comparing the policies under different information sets, the paper
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characterizes the value of information and learning, and their influence on the interaction

of financial policies.

Finally, a well-established strand of papers studies the implications of learning on asset

prices. For example, Wang (1993) considers an equilibrium model in which uninformed

investors and informed investors trade against each other. Uninformed investors obtain

information from the equilibrium price and dividends. Veronesi (2000) and Li (2005) study

how information quality (i.e. the precision of signals) affects the market risk premium

and volatility. Other related papers include Barlevy and Veronesi (2000), Peng (2005),

Jagannathan and Liu (2019) and Jagannathan, Liu and Zhang (2019), among others. Pastor

and Veronesi (2009) provide a detailed review of this area. These papers focus on the

equilibrium features, and the price of information is determined through trading among

agents. Diverging from these papers, I focus on how information affects the learning curve

and the corresponding corporate finance implications in a partial equilibrium model by

assuming the informativeness and cost of the extra signal are exogenously given.

2 The Model

The objective of this paper is to study the influence of information acquisition on the

acquirer’s financial decisions. Toward this end, I present a general dynamic model of learning

with the choice to acquire additional signals. The analysis is illustrated in the context of a

firm’s payout and investment decisions in risky assets. I leave the discussion of applications

and predictions in a wider context for Section 5.
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2.1 Investment opportunities

Time is continuous, and the horizon is infinite. A firm6 can invest an amount At in a risky

asset that generates a return given by a stochastic process

dAt
At

= θtdt + σAdZAt (1)

where σA is a known positive constant and ZA is a standard Brownian motion defined on

a complete probability space (Ω,F ,P). The expected rate of return of the asset, θt, is

unobservable and is governed by a random process

dθt = (a0 + a1θt)dt + σθdZθt = a1(
a0

a1

+ θt)dt + σθdZθ ≡ −λθ(θt − θ)dt+ σθdZθ (2)

where a0, a1 and σθ are known constants.7 Zθ is another standard Brownian motion with

cor(dZθ, dZA) = ρθA. The paper focuses on incomplete information and imperfect learning

and abstains from other frictions such as short selling constraints. Thus, the firm can either

go long the risky asset or take a short position in it. The firm finances the investment with

equity Wt and net debt Dt, and can borrow and save at the risk-free rate r, i.e.

dDt = rDtdt (3)

A negative value for Dt means that the firm has a net surplus of safe, liquid assets.

6The firm is run by a manager acting on behalf of the risk averse investors (shareholders). The manager
can also be an owner-manager of a firm; in this case, the manager herself is risk averse and acts to maximize
her lifetime utility from the firm’s payout. The analysis also applies to other scenarios such as portfolio
management. In this case, one could also think of the firm as a fund, where the fund manager determines
the portfolio choices and payout to maximize the investors’ utility. In the paper, I use firm, agent and
manager interchangeably, and investors and shareholders interchangeably.

7With a1 = 0, the process for θ is an arithmetic Brownian motion, while with a0 6= 0 and a1 < 0, it is an
Ornstein–Uhlenbeck mean-reverting process. In both cases, the drift evolves continuously over R. The main
numerical analysis of the paper is based on the arithmetic Brownian motion assumption. The propositions
and proofs hold for a general a1, unless stated otherwise. In unreported analysis, I also replicate the study
for the case with an O-U process. The main conclusions are consistent with the arithmetic Brownian motion
case.
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2.2 Signals and information

The endowed information set is I0t = {At}. Without any other information, the agent can

only learn from the realized returns up to time t. The agent can acquire an additional signal

St, which expands the information set to I1t = {At, St}.8 The signal evolves according to

dSt = b1θtdt + σSdZSt (4)

where b1 and σS are known constants. ZS is a Brownian motion with cor(dZA, dZS) =

ρAS and cor(dZθ, dZS) = ρθS. The covariance terms are defined accordingly, e.g. σθA ≡

ρθAσθσA. The actual information is summarized by the filtration FI0 and FI1 defined on

the information set I0 and I1, respectively. The model can be generalized to cases with

multiple signals and assets, and the analysis can be adapted correspondingly. However,

consideration of more than one signal or asset does not generate new economic insights but

complicates the notation.9 For simplicity’s sake, I focus on the single risky asset and one

signal setting.

2.3 Inference process

At each instant of time, the firm determines the risky investment and payout conditional

on information up to time t. As shown in Williams (1977), Detemple (1986) and Gennotte

(1986), the agent’s decision-making process can be decomposed into an inference problem

in which she forms an estimate of the unobservable state variable and a subsequent op-

timization problem in which optimal policies are set with the estimate. This two-stage

optimization process is known as the separation theorem in which information and learning

play crucial roles.10

8For the moment, I assume the signal is costless. This assumption is relaxed in Section 4 where the cost
effect of information acquisition is taken into account. The signal can take a variety of forms in reality (for
example, hiring an investment advisor, conducting market research, and observing public announcements).

9With multiple risky assets, the risky asset can be thought of as a composite asset (ETFs).
10According to Gennotte (1986), the continuous-time separation theorem holds here for the following two

reasons. First, the rate of return depends linearly on θt. Second, with the assumption that the prior belief
of θ0 is Gaussian, the variables θt, At, and St, given by (1), (2), and (4) respectively, are also conditionally
Gaussian, meaning that only the first two moments matter for the agent’s inference and optimization.
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Conditional on the information set Ii, i = 0 or 1, the agent’s posterior belief of θt is

summarized by the first two moments: mIit ≡ E(θt|FIit ) and vIit ≡ E[(θt − mt)
2 | FIit ].

The prior belief of θ is assumed to be normally distributed with mean m0 and variance v0;

thus, the posterior estimate is also normally distributed. Applying the continuous filtering

method (Liptser and Shiryaev (2001a, 2001b)), the inference process can be summarized by

the following proposition:11

Proposition 1 The updating rules for the conditional mean with respect to the filtration

FI0t and FI1t are

dmI0t = (a0 + a1m
I0
t )dt︸ ︷︷ ︸

expected change

+
σθA + vI0

σA︸ ︷︷ ︸
weight on the unexpected shock

1

σA

(dAt
At
− mI0t dt

)
︸ ︷︷ ︸

surprise from the realized return

(5)

≡ (a0 + a1m
I0
t )dt +

σθA + vI0

σA

ˆdZI0At ≡ (a0 + a1m
I0
t )dt + ξ0

ˆdZI0At (6)

dmI1t ≡ (a0 + a1m
I1
t )dt︸ ︷︷ ︸

expected change

+ ξA
1

σA

(dAt
At
− mI1t dt

)
︸ ︷︷ ︸

surprise from the realized return

+ ξS
1

σS

(
dSt − b1m

I1
t dt

)
︸ ︷︷ ︸
surprise from the signal

≡ (a0 + a1m
I1
t )dt + ξA

ˆdZI1At + ξS ˆdZSt (7)

where

ξ0 =
vI0 + σθA

σA
, ξA ≡

ξ1 − ρASξ2

1 − ρ2
AS

and ξS ≡
ξ2 − ρASξ1

1 − ρ2
AS

(8)

with ξ1 ≡
vI1 + σθA

σA
and ξ2 =

b1v
I1 + σθS
σS

(9)

vI0 and vI0 denote the stationary estimation variances (errors) that are derived by solving

the Riccati-type variance updating equations12

dvI0t
dt

= 2a1v
I0
t + σ2

θ︸ ︷︷ ︸
information noise

−
(σθA + vI0t

σA

)2

︸ ︷︷ ︸
information gain

= 0 (10)

dvI1t
dt

= 2a1v
I1
t + σ2

θ︸ ︷︷ ︸
information noise

− (ζ2
At + ζ2

St + 2ρASζAtζSt)︸ ︷︷ ︸
information gain

= 0 (11)

11All proofs are in the Appendix.
12ζAt and ζSt are defined in (41) in the Appendix.
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The expressions of vI0 and vI0 are given by Equations (43) and (44) in the Appendix.

Equation (6) and (7) suggest that the updating rules consist of two elements: an ex-ante

deterministic component and an ex-post “surprise” component. The former represents the

adjustment before any observations, while the latter describes the update after observing

“surprises”. ˆdZI0At,
ˆdZI1At and ˆdZSt are the Kalman gains capturingw the unexpected shocks.

ξ0, ξA and ξS are the weights that determine how much new information is incorporated

and depend on the degree of parameter uncertainty and estimation inaccuracy. Specifically,

ξ0 implies that for σθA > (<) 0, the agent, due to the estimation error, overattributes

(underattributes) a positive surprise to the increase (decrease) in the drift term, and thus

overestimates the future expected return. Notice that with stationary learning, ξ0 = σθ, the

agent attributes the entire unexpected jump in the realized return to a permanent shift in

the drift term. Therefore, the agent, without any other information aid, behaves as if past

return is a perfect predictor for future return even though it is not.

Learning is assumed to be stationary in order to focus on the cost and value of infor-

mation acquisition.13 In other words, this paper is interested in the steady-state where

no further refinement of the estimate can be achieved after exhausting all the information.

Focusing on the steady-state allows us to study the long-term value of information acquisi-

tion. Moreover, the stationary learning assumption is consistent with the fact that imperfect

learning is not merely a transitory problem. It persists as past realizations are usually insuf-

ficient to predict future expected returns. Mathematically, the steady-state learning errors

are obtained when information gain offsets the noise, i.e. the solutions to (10) and (11).14

Examing the estimation error shows

Proposition 2 With stationary learning and a1 = 0, the extra signal improves the learning

accuracy, that is, vI0 ≥ vI1.15

This is rather intuitive – “the more, the better”. The acquisition of new signals enables the

agent to appraisal the investment opportunity more accurately. The degree of improvement

13The time before the stationary state is reached is not studied. Perfect learning is not ruled out, and
can be achieved if a specific information set is obtained.

14This gives v0 = vit = vi for all t, and vi is determined by the information structure Ii.
15For a1 6= 0, I show numerically that vI0 ≥ vI1 also holds.
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in inference depends crucially on the structure of the signal. Comparing the two updating

rules, one can see that information acquisition influences the learning process through two

channels. First, it provides a new information source to learn, as represented by ˆdZSt.

Second, it refines the understanding of the past return predictability, shown by changing

the weight from ξ0 to ξA. Without additional information, the firm observes a return but fails

to identify its properties and its exact role in predicting future returns. The new signal helps

to refine the part of learning that is based on realized return and updates the belief about

past shocks’ contribution to future shocks. Perfect learning is still possible if a particular

information structure is defined. If the drift is deterministic (σθ = 0), perfect inference is

always achieved (v = 0) under an infinite learning horizon. However, with σθ 6= 0, perfect

learning is achieved if

ρθA = ±1 for I = I0 (12)

ρθS = ±1 or 1 − ρ2
θA = (ρAS − ρθS)2 + 2ρASρθS(1 − ρθA) for I = I1 (13)

ρθA = ±1 means that the past return is a sufficient statistic for the future expected rate

of return as they move simultaneously and proportionally. If ρθA 6= ±1, then past return

is a noisy signal and gives rise to learning uncertainty. Nevertheless, as can be seen from

condition (13), with information acquisition, perfect learning is still possible when ρθA 6= ±1

as long as the extra signal acquired fills the information gap.

The processes of the return and the signal can now be rewritten in terms of variables

that are fully known to the agent, {mIi , dẐI0At, dẐ
I1
At, dẐSt}, instead of the unobservable ones,

{θ, dZAt}. Conditional on FIit , for i = 0 or 1,

dAt
At

= mIit dt + σA
ˆdZIiAt and dSt = b1m

I1
t dt + σS ˆdZSt (14)

2.4 The firm’s decision problem

At each point in time, the firm invests an amount At in the risky asset and pays out ct to

the investors, given the information up to t and the firm’s net wealth Wt. The net wealth
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process based on different information structures is given by

dWt = dAt − dBt − ctdt = [(r + (mIit − r)ωt)Wt − ct]dt + ωtσAWt
ˆdZIiAt (15)

where ωt ≡ At
Wt

represents the proportion of the net worth invested in the risky asset.

The risk averse investors have a common CRRA utility function, i.e. constant coefficient

of relative risk aversion, and maximize the expected life-time utility from the payout ct.

Therefore, at each instant t, conditional on the available information, the agent optimizes

by choosing the payout ct and the investment ωt, that is,

Ji(Wt,mt) = max
{ct,ωt}

Et
[ ∫ ∞

t

e−ρt
c1− γ
t − 1

1 − γ
dt | FIit

]
(16)

where ρ is the subjective discount factor, and γ > 1 is the coefficient of relative risk aver-

sion.16 Thus, the two optimization problems corresponding to the two information structures

are

Problem 0 (Endowed Information: 0-signal) With filtration FI0, the agent performs

the maximization as in (16), subject to the intertemporal budget constraint (15) as well as

the standard transversality condition.

Problem 1 (Expanded Information: 1-signal) With filtration FI1, the agent performs

the maximization as in (16), subject to the intertemporal budget constraint (15) as well as

the standard transversality condition.

As a useful benchmark, I also consider a baseline model absent of incomplete information,

in which the agent is able to observe θt perfectly, i.e. FI2t ≡ Ft. The information structure

implies FI0t ⊂ FI1t ⊂ FI2t for all t.

16The transversality and feasibility conditions require γ > 1. The γ = 1 (log utility) case is considered
as the myopic case where the investor’s optimal policies are independent of the estimation risk (Brennan
(1998), Feldmand (1992)). For γ < 1, the transversality condition is violated. The stochastic expected rate
of return means that θt can become extremely positive or negative and low risk aversion induces the agent
to invest heavily into the risky asset, which makes the claims unbounded and the transversality condition
violated.
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Problem 2 (Perfect Information) With filtration F2
t , the agent performs the maximiza-

tion as in (16) with mt being replaced by the true value θt, subject to the intertemporal

constraint

dW = [(r + (θt − r)ωt)Wt − ct]dt + ωtσAWtdZAt (17)

as well as the standard transversality condition.

Frictions such as borrowing constraint and short selling restriction are not considered within

this paper. This means the firm can undertake a short position in the risky asset when the

estimated return is below some thresholds.

3 Optimal Policies

The expected rate of return varies over time, meaning the investment opportunity set is time-

changing. Meanwhile, limited information impedes an accurate evaluation of the asset. The

two intertwined uncertainties shape the firm’s optimal policies. The power utility function

implies the indirect utility function Ji(Wt,m
Ii
t ) is separable and can be written as

Ji(Wt,m
Ii
t ) =

W 1− γ
t

1 − γ
Gi(m

Ii
t ) − 1

ρ

1

1 − γ
≡ W 1− γ

t gi(m
Ii
t ) − 1

ρ

1

1 − γ
for i ∈ {0, 1}

(18)

where gi(m) is a function capturing how valuable the investment opportunity is for the firm

and encapsulating the two sources of uncertainties and the influence of information. The

propositions below present the solutions to the three optimization problems.17

Proposition 3 In Problem 0, the investor’s value function can be written as in (18), where

g0(m) exists and is continuous, finite and concave for mt ∈ R. The optimal investment

policy ω∗0 and consumption policy c∗0 are:

ω∗0 =
m − r

γσ2
A

+
[ σθA
γσ2

A

g′0(m)

g0(m)
+

vI0

γσ2
A

g′0(m)

g0(m)

]
≡ ωm0 + [ωu0 + ωv0 ] (19)

c∗0 = W (1 − γ)−
1
γ g0(m)−

1
γ (20)

17The time index t and the superscript of mt are omitted from now for expositional purposes. m refers to
the estimation of the drift term with the corresponding information structure specified in the propositions.
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where the function g0(m) is the solution to

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(m − r)2

σ2
A

)
g0(m) +

γ

1 − γ
(1 − γ)1− 1

γ g0(m)1− 1
γ︸ ︷︷ ︸

investment factor

+
(
a0 + a1m +

1 − γ

γ

m − r

σA

σθA + vI0

σA

)
g′0(m) +

1

2

1 − γ

γ

(σθA + vI0

σA

)2 g′0(m)2

g0(m)︸ ︷︷ ︸
hedging factor

+
1

2

(σθA + vI0

σA

)2

g′′0(m)︸ ︷︷ ︸
information factor

= 0

(21)

with the boundary conditions limm→−∞ g
′
0(m) = limm→+∞ g

′
0(m) = 0.

Proposition 4 In Problem 1, the investor’s value function can be written as in (18), where

g1(m) exists and is continuous, finite and concave for m ∈ R. The optimal investment policy

ω∗1 and consumption policy c∗1 are:

ω∗1 =
m − r

γσ2
A

+
[ σθA
γσ2

A

g′1(m)

g1(m)
+

vI1

γσ2
A

g′1(m)

g1(m)

]
≡ ωm1 + [ωu1 + ωv1 ] (22)

c∗1 = W (1 − γ)−
1
γ g1(m)−

1
γ (23)

where the function g1(m) is the solution to

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(m − r)2

σ2
A

)
g1(m) +

γ

1 − γ
(1 − γ)1− 1

γ g1(m)1− 1
γ︸ ︷︷ ︸

investment factor

+
(
a0 + a1m +

1 − γ

γ

(m − r)

σA

σθA + vI1

σA

)
g′1(m) +

1

2

1 − γ

γ

(σθA + vI1

σA

)2 g′1(m)2

g1(m)︸ ︷︷ ︸
hedging factor

+
1

2

(
ξ2
A + ξ2

S + 2ρASξAξS

)
g′′1(m)︸ ︷︷ ︸

information factor

= 0 (24)

with the boundary conditions limm→−∞ g
′
1(m) = limm→+∞ g

′
1(m) = 0. ξA and ξS are defined

as in (8).

Proposition 5 In Problem 2, with perfect information, mt = θt for all t. The investor’s

value function can be written as in (18), where g2(θ) exists and is continuous, finite and
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concave for θt ∈ R. The optimal investment policy ω∗2 and consumption policy c∗2 are:

ω∗2 =
θ − r

γσ2
A

+
σθA
γσ2

A

g′2(θ)

g2(θ)
≡ ωm2 + ωu2 (25)

c∗2 = W (1 − γ)−
1
γ g2(θ)−

1
γ (26)

where the function g2(m) satisfies the following

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(θ − r)2

σ2
A

)
g2(θ) +

γ

1 − γ
(1 − γ)1− 1

γ g2(θ)1− 1
γ

+
(
a0 + a1θ +

1 − γ

γ

θ − r

σA

σθA
σA

)
g′2(θ) +

1

2

1 − γ

γ

(σθA
σA

)2 g′2(θ)2

g2(θ)

+
1

2

(σθA
σA

)2

g′′2(θ) = 0

(27)

with the boundary conditions limm→−∞ g
′
2(θ) = limm→+∞ g

′
2(θ) = 0.18

If σθ = 0 (then σθA = 0), Problem 0 and 1 are equivalent to Problem 2. As shown in the

three differential equations, three factors jointly determine the valuation of the investment

opportunity, for a given level of total net worth. First, the investment factor: the firm faces

a larger investment opportunity set as the risky asset expands the opportunity set beyond

a single riskless asset.19 Second, the hedging factor: the firm is now exposed to a time-

varying investment environment but, at the same time, can hedge against such uncertainty

through the investment strategy. Third, the information factor: the attractiveness of the

risky investment depends on the agent’s belief about future return as well as the accuracy of

the belief. Both depend on the information set. The agent can learn from the past realized

return (i.e. passive learning by investing) and the extra signals (i.e. active learning by

acquiring information). The influence of information acquisition features in the information

channel explicitly and hedging channel implicitly by altering the firm’s sensitivity to changes

18The optimality conditions require joint concavity of the indirect utility function (18) in both state
variables Wt and mt. This means Jim > 0 and Jimm < 0. Also, as the agent’s beliefs become extreme, the
agent’s behaviour converges to that in the deterministic-drift scenario as in Merton (1969, 1971). Thus, the
first myopic term in the investment policy dominates, and the first derivative of gi(m) for i ∈ {0, 1, 2} goes
to zero as m −→ ±∞

19Note that these two terms are identical to the only terms in the case where the drift is a constant.
When the drift is constant, learning is perfect under infinite horizon, and g(θ) satisfies Equation (56) in the
Appendix. It means that this factor calculates what would be the value of the risky asset for the investor
as if the expected rate of return is a constant equal to m.
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in the investment opportunity. Hence, the value of the investment opportunity depends on

the risk-adjusted return it can generate, the embedded uncertainty, and the required learning

effort.

Closed-form solutions to the problems are not available, and a standard numerical ap-

proach is used. Parameter values are given in Table 1.20 The aggregate hedging demand

ωhi ≡ ωui + ωvi , payout yield ci/W and valuation of the risky opportunity set gi, as well as

the corresponding comparisons between different information sets are plotted in Figure 1 as

functions of m.21

Table 1: Baseline parameter values for numerical analysis

Process Parameter Notation Value

Investment opportunity

risky investment volatility σA 0.14

drift of θt
a0 0.09
a1 0

volatility of θt σθ 0.05

The signal
drift of S b1 0.084

volatility of S σS 0.15

Correlation
cor(dθ, dA

A
) ρθA -0.1

cor(dθ, dS
S

) ρθS 0.5
cor(dA

A
, dS
S

) ρAS 0.01

Other parameters
risk-free rate r 0.05

time discount rate ρ 0.1
coefficient of RRA γ 2

3.1 Investment policy

The optimal investment decision, given in (19) and (22), has three components. ωmi is the

familiar mean-variance term that is often quoted as the myopic investment policy. The

20The purpose of the numerical analysis is to demonstrate the qualitative relation between optimal de-
cisions and information. In the figures and tables discussed in the papers, a consistent set of parameter
values is used. In the numerical example, I set the risk-free rate r = 5% to match the average three-month
Treasury Bill rate. The volatility of the risky asset return σA = 0.14, which is estimated in Xia (2001). The
coefficient of RRA γ = 2 because the commonly accepted range for RRA is between 1 and 3. Sometimes in
the literature, a wider range of estimates, from 0.2 to 10 or higher, is obtained (see Chetty (2006), Campo
et al. (2011), and others). Other parameters characterize the informativeness of the information set. I vary
the parameter values within a wide range and discover the most robust features. Unless otherwise stated,
all proceeding study adopts these parameter values.

21In comparisons of the investment policy, I examine in absolute terms instead of in relative terms because
ωi can be zero, making the ratios spike up and the graphs uninformative.

17



terms in the bracket describe the additional hedging demands: ωui is the hedging require-

ment against the time-varying investment opportunity set, and ωvi is the hedge against the

estimation risk. The three compositions, to some extent, correspond to the three factors

that determine the value of gi(m), and their relative importance characterizes the state-

dependent optimal policy.

Table 2 presents the magnitude and the relative weights of each composition for differ-

ent m. As shown in Panel A, while the myopic component is the same regardless of the

underlying information structure, its relative importance varies because the hedging com-

ponents alter when the belief changes. For example, with no extra signal,
ωm0
ω0

is 90.259%

and 101.330% for m equals to -0.05 and 1.5 respectively. At m = r = 0.05, one can see that

ωmi = 0 for i = 0, 1 and 2, while the two hedging components are non-zero (e.g. ωu1 = 0.081

and ωv1 = −0.747).

The aggregate hedging demand can be rewritten as

ωhi ≡ ωui + ωvi =
σθA + vIi

γσ2
A

g′i(m)

gi(m)
= −σθA + vIi

σ2
A

JiWm

WJiWW

= −σθA + vIi

σ2
A

∂ci
∂m

W ∂ci
∂W

(28)

The common factor in the two hedging components,
g′i(m)

γg(m)
, reveals that the underlying

purpose of the hedges is to hedge against unexpected changes in the investment environment

that could lead to unfavorable drops in future payout as the risk-averse investors attempt to

smooth consumption intertemporally. Such unexpected changes can arise from either shocks

to the investment opportunity or mistakes in the estimation. I numerically show that (Panel

E of Figure 1) g(m) < 0 for all m ∈ R, and there exists a m0 such that g′(m0) = 0 and

g′(m) is negative (positive) to the left (right) ofm0.22 Additional information assists not only

through a direct improvement of estimation accuracy but also through an indirect reduction

of the firm’s vulnerability toward changes in the investment opportunity set. This makes

the result different from previous literature.23

22Since u(c) = (c1−γ−1)/(1−γ) and γ > 1, the utility level is negative. Therefore, 0 < gi(m)/gj(m) < 1
if gj(m) > gi(m). I will discuss the sign of g′i(m) in more detail in Section 3.3 when we discuss the implication
on the investors’ welfare.

23In line with the existing literature (Merton (1973), Brennan (1998), Barberies (2000), and Xia (2001)),
the optimal investment policy includes an explicit term that captures the influence of estimation risk and
another term that reflects the change in the variation in the investment opportunity set. However, in this
paper, the two hedging components are interdependent. Information acquisition changes the estimation
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More specifically, a negative (positive) ρθA implies the shocks to the realized return

are negatively (positively) correlated with the shocks to the expected return. Accordingly,

the firm adjusts estimates upward (downward) after observing decreases in realized return

and considers the risky asset as a proper (improper) hedge to variations in the investment

opportunity. Therefore, ωui is negative (positive) for m < m0 and positive (negative) for m >

m0. Note that estimation risks make the firm more sensitive to changes in the opportunity

set, which inevitably creates a stronger opportunity-uncertainty hedging demand, but at the

same time dampens the risky asset’s hedging role. Hence ωui indeed encapsulates the direct

effect of a time-varying investment environment and the indirect effect of information. In

the absence of learning error, ωu0 = ωu1 = ωu2 (perfect information), meaning in Panel B of

Table 2, differences between ωu2 and ωu0 reflect the indirect influence of imperfect inference,

and differences between ωu0 and ωu1 represent the implicit role of information on the firm’s

sensitivity to changes in the investment environment.

The learning-error hedging demand, ωvi , represents the direct incentive to hedge against

imperfect inference, as the agent anticipates the persistence of learning error. Learning errors

increase the likelihood of unfavourable shifts in payout and reduce the agent’s confidence in

the evaluation of the asset, which means the asset is riskier than it would be otherwise, and

therefore less attractive. In order to hedge against unfavourable shifts in future consumption

and minimize exposure to such error-related risk, a risk-averse agent has a lower intention

to invest in the risky asset (long or short). Table 2 shows that the scale of ωv0 is greater than

the scale of ωv1 , confirming that the direct hedging demand is weakened after information

acquisition. One can also see that ωvi drops out if learning is perfect (vI2 = 0). In sum, if

σθA + vi > 0, the aggregate hedging demand is positive for m ∈ (−∞,m0) and negative for

m ∈ (m0,+∞).24 This is shown in Panel A of Figure 1.

Apart from the strategy to adopt (long or short) and the scale of investment, the invest-

ment policy also has another important dimension: the threshold to switch from long to

short. When the investment opportunity set is constant, the agent adopts a short position

when the expected rate of return is lower than r. In the presence of a time-varying invest-

ment opportunity set and imperfect learning, such a switching point, ms
i , also exists and is

risk, which not only affects ωv directly but also affects ωu indirectly.
24The two hedging components reinforce (partially offset) each other when σθA > (<)0.
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given by

ms
i + (σθA + vIi)

g′i(m
s
i )

gi(ms
i )

= r ⇒ ms
i = r− (σθA + vIi)

g′i(m
s
i )

gi(ms
i )

= r− (σθA + vIi)
JiWm

JiWW

(29)

When the estimated return falls below ms, the agent starts short selling the asset. The

switching threshold shifts and is greater than r whenever σθA + vIi > 0 as ms > m0 and

g′(ms) > 0. As discussed previously, this occurs in two circumstances. The first one is

when the two sources of risk reinforce each other (σθA > 0, vIi > 0, and ωui and ωvi are

of the same sign). Under such a circumstance, the risky asset is neither a good hedge to

variations in the investment opportunity set nor to imperfect inference. The second one is

when the estimation risk dominates (vIi > −σθA > 0, ωui partially offsets ωvi ). Although

investment in the risky asset helps to hedge against unfavourable shifts in the investment

environment, the estimation risk induced by holding the asset is too large, which makes

the asset less attractive and induces the firm to switch earlier. In both scenarios, learning

errors due to limited information reduce the willingness to hold the asset and increase the

switching threshold. Information acquisition unambiguously reduces the threshold, expands

the range where the firm is willing to hold the risky asset. This can be confirmed by column

5 (m = r = 0.05) of Panel E in Table 2, where ω0(−0.775) < ω1(−0.666) < 0 < ω2(0.1).

Imperfect inference leads to inefficient investment policy – nonzero implicit and explicit

hedging demand and higher switching threshold. Information acquisition largely reduces

such inefficiency (see Panel B of Figure 1, where the magnitude of ωh2 − ωh1 is smaller than

the magnitude of ωh2 −ωh0 ). The agent underinvests when the estimated rate of return from

investing, either long or short, is not too small in absolute value. Envisioning the estimation

risk, she acts conservatively by undertaking smaller long/short positions. On the contrary,

the agent takes a bigger short position when the estimated return is relatively small in

magnitude and close to the switching point ms (i.e. m0 < m < ms), somehow creating

an ‘overinvestment’ problem. Small m and the existence of estimation error means the

likelihood of experiencing unexpected shifts in future consumption increases, which makes

the holding of the asset riskier. Moreover, the agent is also uncertain about which strategy

to adopt and when to switch. In this range, the estimation error, although stationary over

states, can potentially lead to a significantly different strategy and outcome, which means
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the influence of estimation risk is more profound and the firm is more vulnerable to shocks in

the investment opportunity. Therefore, hedging and learning are of first-order importance,

which makes information imperative. The short position is scaled up because the embedded

risk of longing the asset (asset volatility, estimation risk, investment opportunity set risk) is

relatively large while the return from investment is relatively small. The absence of frictions

such as transaction cost or shorting selling constraint means the firm can dynamically adjust

the investment without any cost. Therefore, the firm still takes non-zero positions in the

risky asset when m0 < m < ms as uncertainties or risks incurred only scale investment

rather than creating a wedge in the investment policy.

As m moves further away from this range, such scepticism decreases, and information

plays a role mainly in guiding the amount of investment. In extreme cases, the myopic

component dominates, and the value of information acquisition fades away. The above

discussion leads to the corollary

Corollary 1 The difference in the hedging demand generated by the information discrep-

ancy is time-varying and converges to 0 as the estimate becomes extreme, that is, given any

m ∈ R, limm→±∞ ω1 − ω0 = 0.

3.2 Payout policy

The optimal payout policies are given in Equation (20) and (23). Instead of maintaining a

constant payout policy as in the standard Merton (1969, 1971), the firm’s payout policy (the

equityholders’ consumption policy) is now time-varying and state-dependent, where (1 −

γ)−
1
γ gi(m)−

1
γ is the marginal propensity to pay out. The payout yield and the comparison

between different cases are plotted in Panel C and D of Figure 1.

Given the same level of total net worth, the payout yield increases as the firm’s antici-

pated rate of return from investing increases, as shown in Panel C. All else equal, the payout

also increases as the information set expands, which is shown in Panel D and gives

Corollary 2 Given certain level of Wt and estimate mt, the payout yield decreases with

the estimation variance, and the ratios of payouts converge to 1 as the estimate becomes
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extreme, that is, for i, j ∈ {0, 1, 2} and j > i

c∗j
c∗i

=
( gi(m)

gj(m)

)− 1
γ
> 1 and lim

m→±∞

c∗j
c∗i

= 1

Future payout is more expensive as the estimation error increases. With γ > 1, investors

are unwilling to shift consumption across time because the intertemporal rate of substitution

is low. Meanwhile, they value payout smoothing more than the less risk averse investors.

Higher estimation error means that the investors need to sacrifice more for the same con-

sumption tomorrow, i.e. the opportunity cost of current consumption increases. Intertem-

poral substitution becomes expensive, and the cost of achieving intertemporal smoothing

increases. Consequently, the current payout shrinks due to the greater uncertainty in the

future payout. In the numerical analysis, I also show that the greater the estimation risk,

the higher degree of payout smoothing.25 Therefore, payout smoothing emerges as a conse-

quence of risk aversion as well as the persistence of incomplete information and imperfect

learning.

On the one hand, information gathering alleviates investment inefficiency and reduces

required hedging demand and learning effort. On the other hand, collecting more infor-

mation reduces the need to preserve wealth to buffer unanticipated shocks in the future.

Therefore, the improvement in investment efficiency and reduction in precautionary saving

increases disposable income. Moreover, increasing confidence in the assessment of the fu-

ture investment environment encourages the firm to pay out more and makes intertemporal

substitution less expensive. Overall, one could expect a positive influence of information

acquisition on the payout policy because of a better understanding of future outlook, which

is verified in Panel D in Figure 1 (all the ratios, ci/cj with i > j, are above one).

Panel D in Figure 1 shows a bimodal shape of payout ratios, and the two modes straddle

on the two sides of m0. Recall that m0 is the point where the value of the risky investment

opportunity reaches the minimum. The positive influence of information acquisition shrinks

for anticipated rates of return that are close to m0 as the investment opportunity is less

valuable. As managerial beliefs move away from this point, the risky asset becomes more

25With the parameter values specified in Table 1, for a given level of Wt, the variances of the payout yield
ci/W are 52.54, 52.63, and 53.06 for the 0-signal, 1-signal and perfect information cases respectively.
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valuable in improving payout and welfare. When the estimated rate of return from investing

is still relatively low, especially around the switching threshold, estimation risk has a more

significant impact, making learning more important. Therefore, the positive influence of

information acquisition becomes more salient. In these regions, the marginal utility of

consumption remains high due to the relatively low level of payout. As the perceived return

gravitates toward extremes, learning becomes less valuable, and so is information. Therefore,

the information-induced consumption converges to 0 as m→ ±∞.

3.3 Welfare implications

The investors want to maximize the lifetime utility from the payout. Learning based on

different information sets alters the payout pattern and therefore influences the welfare

the investors could obtain from investing in the firm. Information acquisition affects the

payout and welfare through gi(m), as shown in (18). As discussed at the beginning of

Section 3, three factors together determine the value of gi(m): the investment, hedging and

information. Learning accuracy affects the magnitude and intensity of these factors. Panel

E and F of Figure 1 plot gi(m) and the differences as functions of m, respectively.

Since the firms can take either long or short position, it means that the downside occurs

when the |m| is relatively small while the upside refers to cases where |m| is large. Panel

E shows that, all else equal, the investment opportunity becomes more valuable when the

estimated rate of return from investing (both long and short) increases; in other words,

where the investment factor dominates. In good times, the agent expects the firm’s total

net worth to grow at a higher rate, and consequently is willing to increase payout, which

leads to higher consumption and welfare. The valuation reaches the minimum at m0 where

g′(m0) = 0. At this point, the aggregate hedging component, as shown in Section 3.1, is

zero, shutting down the hedging contribution of the risky asset. The investment role is also

tiny because the anticipated rate of return from investment is small, leaving the learning

roles. As a result, the benefits from investing in the risky asset reduce, and the risky asset
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becomes less valuable. Substituting g′(m0) = 0 into (21) and (24) shows

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(m − r)2

σ2
A

)
gi(m) +

γ

1 − γ
(1 − γ)−

1
γ gi(m)−

1
γ︸ ︷︷ ︸

investment factor

+
1

2
Ψig
′′
i (m)︸ ︷︷ ︸

information factor

= 0

(30)

where Ψi denotes the reduction in estimation error from Ii. The above equation shows that

only the investment factor and information factor remain. Therefore, the discrepancy in the

welfare around this point mainly reflects the difference in learning based on differentiated

information sets. As m deviates from this point, the agent starts to rely on the asset to hedge

against uncertainty in the investment opportunity, and the indirect effect of information

also starts to emerge, which reinforces the positive influence of information acquisition and

generates a bimodal shape shown in Panel F.

Also, the firm values the investment opportunity more when it has a better under-

standing of it. The investors benefit from information acquisition as a higher assessment

accuracy of the investment environment induces more efficient investment decisions and a

higher payout. The positive effect is particularly strong in bad times where the expected

rate of return is relatively small. The welfare improvement fades out as the anticipated

rate of return gravitates toward extremes. As the instantaneous return from investment be-

comes relatively large, the investment factor dominates the other two factors, and the agent

becomes more myopic in setting the policies. Payout is relatively high, and the marginal

utility of consumption for the investors is relatively low. Hence, the estimation accuracy

is no longer the primary concern, and the incremental welfare generated by information

gathering becomes negligible. The discussion leads to

Corollary 3 Given any total net worth Wt > 0 and an estimation mt ∈ R, the indi-

rect utility increases as the learning error decreases. The learning-error induced differences

converge to zero as the estimated rate of return becomes extreme, that is

J2(W,m) ≥ J1(W,m) ≥ J0(W,m) and lim
m→±∞

J∗1 (m,W )

J∗0 (m,W )
= 1 (31)
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4 The Cost and Value of Information Acquisition

So far, I have assumed that information acquisition is costless.26 Advances in modern infor-

mation technologies have reduced the cost of information gathering significantly. Regulators

also have been adapting to the unprecedented evolution in data production. For example,

the SEC introduced the EDGARD system to change the paper-based corporate disclosure

to a digital one in 1993 and allowed firms to use social media platforms such as Facebook

and Twitter to release essential messages in 2013. Such progress enables timely information

dissemination and reduced acquisition cost significantly (Gao and Huang (2018), Goldstein,

Yang and Zuo (2020)). Meanwhile, casual observation reveals that agents nowadays do

pay for information or services in order to facilitate better decision making. Curran (2019)

forecasts the total revenue of the U.S. financial data service providers to reach $17 billion

in the year 2024 from $15.4 billion in 2019. Active equity funds, sell-side analyst reports,

investment advisors etc. have been playing important roles in directing capital flows. Thus,

addressing the value and cost of information acquisition becomes economically crucial as

it helps to understand the role of growing information intermediaries (e.g. mutual funds,

wealth managers, consulting firms, data providers) and the value they create. It also sheds

light on how costs affect the attractiveness of information services and reconciles empirical

evidence.

4.1 Certainty equivalent of wealth

The previous discussion indicates that the extra signal’s influence is not stationary even

though its contribution to learning is stable (vI0 − vI1 is constant), suggesting that the

willingness to pay for information acquisition varies over time.

To examine the variation of information value, two measures are used. The first one is the

certainty equivalent of wealth (CEW), with which the agent is indifferent between keeping

the default information structure and conducting extra information search. Mathematically,

it is defined as δijW such that Ji(W (1 + δij),m) = Jj(W,m), with i, j ∈ {0, 1, 2}. For

26Cost can be of a pecuniary form (e.g. management fee, cost to the brokers) or a nonpecuniary form
(e.g. time and effort).
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example, δ01(m)W is the amount of wealth the agent with I0 is willing to relinquish for the

extra signal that expands the information set to I1. δij(m) can be written as

δij(m) =
(gj(m)

gi(m)

) 1
1− γ − 1 =

( ci
cj

)− γ
1− γ − 1 (32)

This indicates that the main driver of CEW is the variation in payout. All else equal,

the CEW is increasing in the degree of risk aversion, meaning a more risk-averse investor

values the signal more. Panel A in Figure 4 plots δij(m), and the results are consistent with

the discussion in Sections 3.2 and 3.3. First, it shows that, despite the time-fluctuating

influence of the signal, there is always a positive value attached as long as perfect learning

can not be achieved, and the value can be quite significant in some states. Second, the

certainty equivalent of wealth for information is also bimodal in m, and the two modes lie

on the two sides of m0. The signal is worth less for estimates around m0 because the benefits

from investing are relatively low. Accordingly, the learning effort dampens, resulting in lower

demand for information. As beliefs move away fromm0, the investment opportunity becomes

more valuable for its roles in hedging, investment and learning. When the anticipated rate

of return is still not large enough, especially around the switching threshold, the estimation

risk imposes a greater threat to the firm’s decision-making, the asset is more ‘risky’, and the

value of information surges. The agent has a lower intention to acquire new signals when

she holds a high expectation about the investment return. Thus, the corollary follows

Corollary 4 The certainty equivalent of wealth (CEW) of information is time-varying, with

lim
m→±∞

δij(m) = 0 for i, j ∈ {0, 1, 2} and i < j (33)

4.2 Cost distortion effect

Assume the cost of information acquisition is proportional to the total amount of investment,

and the intertemporal budget constraint becomes

dWt = dAt − αAtdt + dDt − cdt = [(r + (mIit − r − α)ωt)Wt − ct]dt + ωtσAWt
ˆdZIiAt (34)
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where αAtdt represents the instantaneous proportional cost. Another way to interpret the

cost is that the agent has to forgo α rate of return in order to obtain the signal. Such

proportional cost structure is common in finance; for example, the mutual fund fee, the

management and incentive fee in private equity funds.27 Now the agent has to balance

the costs and benefits of information gathering. With the cost consideration, the agent’s

evaluation of the risky investment opportunity changes. The proportional cost introduces

the following extra terms to Equation (24):

α(1 − γ)

2γσ2
A

[
(α − 2(m − r))g1(m) − (σθA + vI1)g′1(m)

]
(35)

A direct cost consequence is a reduction in return from investment as the firm can only

collect a fraction of it, which is reflected by the first term in the bracket. However, the

new signal also reduces the riskiness and uncertainty, which offsets some of the negative

cost impacts. This is shown by the second term in the bracket. If acquiring an extra signal

incurs a cost that overtakes the benefit it brings, the optimal decisions are subsequently

distorted.

To examine the distortion effect, I compare the optimal policies under costly acquisition,

with those under costless acquisition, for a given Wt. Panels A and B of Figure 2 plot the dif-

ferences between {(ω?1(m), c?1(m))|α 6= 0)} and {(ω?1(m), c?1(m)|α = 0}.28 Unsurprisingly,

the cost induces the agent to shrink the investment scale as the realized return is lower while

the risk involved remains unchanged. Because of the reduction in the anticipated return

and distortion in the investment, payout is revised downward accordingly. As a result, costs

unambiguously make the investors worse off, and the detrimental effect increases as costs

rise.

Panels C and D of Figure 2 compare the optimal policies between the costly 1-signal case

27This is equivalent to subtracting the instantaneous fee ratio α from the expected rate of return, which

means the return process of the risky asset becomes dAt/At = (mI1 − α)dt + σAdẐ
I1
At. Dangl, Wu and

Zechner (2006) also model the mutual fund management fee using a similar setup in a continuous-time
model to examine the interaction of mutual fund managers’ turnover, performance, and risk-taking, and
investors’ learning and capital flow.

28In the numerical result, I only focus on the side where a long position is taken with α = 0 and discuss
the cost impacts when α is set to be 0.0015, 0.005 and 0.01. For the other side, the analysis can be applied
accordingly.
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and the 0-signal case. With low cost (dotted lines, α = 0.0015), the benefit dominates. While

investment and payout are shrunk accordingly, the investor is still better off with the signal.

As the cost increases, the distortion effect emerges. With slightly higher cost (dashed lines,

α = 0.005), the newly acquired signal mitigates the inefficient investment problem compared

to the 0-signal case, but only in states where learning accuracy is imperative. As can be seen

from Panel C, the improvement effect of the costly signal is particularly strong when the

estimates are relatively small and close to the switching threshold. Estimation error leads

to a disparity between the realized and the estimated return and results in inefficiency.

The firm is more sensitive to the estimation risk in this range and, thus, demands higher

assessment precision. Information is deemed to be exceptionally important here as the agent

may mistakenly adopt a completely opposite strategy due to a small estimation error. With

this premise, the information acquisition, although costly, mitigates inefficiency and gives

rise to a higher payout compared to the 0-signal case.

However, as beliefs gravitate toward extreme (when m > 0.9985 for α = 0.005), the

demand for better inference decreases and the cost incurred dominates. The agent has

to scale back investment and reduce the payout to levels that are even lower than under

the 0-signal case in order to cover the cost. In this case, the costly acquisition aggravates

inefficiency. This can also occur when the cost of information acquisition is too high relative

to its embedded informativeness (thin solid line, α = 0.001), in which distortion happens

even when the demand for better learning is high.

Figure 3 presents the ratios of the welfare, g1(m;α)
g0(m)

, for different levels of costs and a

given level of Wt. For small α (0.0015), the investors’ welfare, although slightly lower than

the zero cost case, improves compared to the 0-signal cases.29 For medium α (0.005), the

extra signal does not always improve indirect utility. The cost overtakes the estimation risk

concern when m > 0.9985, hampering the investors’ welfare. For large α (0.01), the cost

erodes the benefits and the firm finds it too expensive to conduct costly information search.

Overall, we can see that the cost distortion effect is state-dependent. The result implies

that the value of information is countercyclical – it is high (low) in the downside (upside)

where the expected rate of return from investing is low (high). Moreover, it also depends on

29Note that gi(m) < 0; therefore, if a signal improves welfare, g1(m;α)
g0(m) < 1.
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the agent’s learning path. This means that a positive signal leading to investor optimism

(large m) can crowd out the subsequent motivation for information collection. A negative

signal that revises the beliefs downward can induce a greater effort to obtain information.

These results generate a variety of empirical implications that will be discussed in Section

5.

4.3 The cutoff cost boundary

In this section, I consider a second measure of information value – the cutoff cost boundary.

Denote α01 the cutoff cost, i.e. the maximum percentage cost the agent is willing to pay to

expand her information to I1 from I0. Signals reducing the estimation error from vI0 to vI1

are deemed to be too expensive if they cost more than α01. In this case, the agent prefers a

poorer assessment over an expensive one. I show that the critical α01 is the solution to the

following30

[(r − m)g0(m) − (σθA + vI1)g′0(m)]α01 +
1

2
g0(m)α2

01

= (m − r)(vI0 − vI1)g′0(m) +
1

2

[
2σθA(vI0 − vI1) + (vI0)2 − (vI1)2

]g′0(m)2

g0(m)

+
1

2
σ2
A

γ

1 − γ

[(σθA + vI0

σA

)2

−
(
ξA + ξS + 2ρASξAξS

)]
g′′0(m)

(36)

By solving the quadratic function, α01 can be uniquely pinned down for each m and the

expression is given by (57) in the Appendix.31 The boundary is obtained when the marginal

cost equals the marginal benefits. The left-hand side of (36) represents the cost of the signal:

the firm can only collect a fraction of return, and the total net worth is now accumulated at

a lower rate. The right-hand side captures the benefit: estimation risk is mitigated, and the

firm is less sensitive to variation in the opportunity set. The firm is more robust to changes

in the investment environment and therefore requires lower hedge and precautionary saving.

30αij denotes the maximum rate of return the agent with Ii is willing to relinquish in exchange for
information Ij . I defer the tedious derivation to the Appendix.

31The quadratic shape comes from the symmetric of the gi function as no restrictions are imposed on the
investment strategy. The agent can switch from long to short when the expected rate of return is below the
switching threshold. Solving the quadratic function leads to two distinct roots for each m (one positive and
one negative). The positive (negative) solution is selected for m such that a long (short) position is taken.
Otherwise, the cost becomes a stream of income rather than expenses.
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Panel B in Figure 4 plots αij in m and shows results that are in line with the previous

discussion. At each state, the agent is willing to trade off a certain degree of expected

return for a better assessment; however, such willingness varies. The cutoff cost increases

as the informativeness increases. The agent is more willing to pay when uncertainty lies

not only in the amount of investment but also in the sign the position. The critical α is

also high in bad times, where the firm relies on the investment opportunity for hedging and

learning, yet the return from investment is low. The maximum cost the firm is willing to

pay drops as the anticipated return from investment increases. The high estimated rate of

return reduces the influence of estimation risks, making the investment more attractive and

the hedging demands being dominated. Also, the absolute amount of return relinquished

to information providers jumps. Consequently, the maximum cost that the agent is willing

to absorb descends. The time-varying cutoff cost suggests that a constant cost structure

can distort the firm’s policies in some states, even though the quality of the signal remains

unchanged. The value of information and thus the motivation for information gathering,

ceteris paribus, depends not only on the cost, but also the agent’s beliefs and her learning

path.

5 Empirical Implications and Applications

The general model presented has applications in various aspects of financial economics

and provides empirical implications that are relevant to a variety of literature. In this

section, I demonstrate the model’s implications for three cases of application: passive and

active investing, public information and private information production, and investment and

payout.

5.1 Passive and active investment

The first implication of the model is that the value of information acquisition is time-varying

and depends on the cost incurred. Without additional information, the agent adjusts her

strategy passively in response to new observations of realized return. With active infor-
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mation collection, the agent uses the newly acquired signal St to guide the investment and

payout decisions. Such a setup allows us to map the generic model to the discussion of active

and passive investment and draw implications. Within the content of this paper, the extra

signal can be thought of as the service provided by financial intermediaries such as mutual

funds. The investors compare the passive investment (0-signal) with the active investment

(1-signal).32

Established research in individual investors and mutual funds shows that active investors,

who presumably make more informed choices, underperform their passive counterparts, net

of fee and transaction cost.33 This model demonstrates that, all else equal, active invest-

ment creates information advantage and ‘outperforms’ the passive investment before cost.34

Active information gathering enables better evaluation of the investment opportunity set,

thereby improving decision making. However, the benefits created by active management

can be overwhelmed by the cost incurred, in particular when learning is less important

and when the cost is high. Cost overturns the ‘outperformance’ and induces inefficient

decision-making.

Table 3 presents the cutoff cost, αij, calculated by the model and the corresponding

changes in the indirect utility function, gi(m)
gj(m)

− 1.35 With the baseline parameter values

specified in Table 1, for a signal that reduces the estimation variance by 16%, the maximum

cost a risk averse investor is willing to bear (α01) is 0.7% of the total investment when

the expected rate of return is 12% (7% net of the risk-free rate). This is much lower than

the conventional 1 – 2% expense ratio incurred when investing in active mutual funds.

For a 40% anticipated rate of return, α01 = 1%. In comparison, investment in private

equity funds often incurs a 2% management fee plus an extra 20% performance charge.

32Dangl, Wu and Zechner (2006) use a continuous-time learning model to examine a mutual manager’s
career, performance and risk-taking behavior, where investors learn about the managers’ stock-picking ability
by observing the fund performance. In their model, they assume competitive provision of capital and the
management company try to maximize the value of the whole company. Different from this paper, my paper
focuses on investors’ decisions, where they compare between passive and active investment options.

33See Jensen (1968), Wermers (2000), Barber and Odean (2000) and others.
34Note that in this paper, the performance of an investment is measured in terms of the discrepancy

between the financial decisions under incomplete information and the ones under perfect information (i.e.
the efficiency of the investment policy, and differences in the payout and the degree of improvement in the
investors’ welfare) rather than abnormal return as in the traditional asset pricing literature.

35Note that gi(m) is negative for all m. Therefore, an improvment in the indirect utility is represented
by a negative gi(m)/gj(m)− 1.
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The cutoff boundary increases in the informativeness of the signal. If there exists a signal

that can provide perfect information, the investor is willing to pay α02 = 6% of the total

investment when m = 40%, with which the welfare is raised by 34.7%. Costs exceeding the

cutoff boundary exhaust the benefits created, induce ‘underperformance’ and dampen the

investors’ interest in information services.

Despite the persistent ‘underperformance’ of costly active funds, the active management

industry remains gigantic, which is puzzling given the widely available less expensive passive

alternatives.36 Moskowitz (2000) proposes a hypothesis stating that investors are willing to

tolerate underperformance for the value the active funds can create when they are needed the

most; for example, in a recession. Some papers have already documented outperformance

of active funds in recessions (Glode (2011), Kacperczyk, Van Nieuwerburgh, and Veldkamp

(2014, 2016), and others). Glode (2011) proposes a model that is in line with the Moskowitz

(2000) hypothesis. In his model, the manager exerts greater effort and delivers a higher

return in states where the marginal value of consumption and willingness to pay for the

service of investors are high. Empirically, he finds that underperforming funds that charge

high fees can deliver countercyclical abnormal returns.

Consistent with these observations and hypothesis, my model shows a time-varying value

of active investing. Information service is more critical for an risk-averse investor when the

investment environment is more volatile,37 and in bad times where the expected return

from investment is relatively low. Under these circumstances, risks from investment, includ-

ing the return volatility, the estimation risk and the opportunity uncertainty risk, are too

high relative to the estimated return. Payout is relatively low and therefore the investor’s

marginal utility of consumption is high, which leads to a surge in the motivation to invest

in costly active management to improve decision making. This suggests that investors are

willing to accept a certain degree of cost distortion in some states in exchange for better

decision-making in some other states where consumption or payout is needed the most. Put

differently in the context of capital flow, the model implies more capital inflows to the active

36‘US money market funds waive fees to stave off negative returns,’ Financial Times, 29 May 2020;
‘Fidelity’s zero-fee campaign spurs $6.6bn of inflows,’ Financial Times, 26 November 2018.

37In an unreported result (available upon request), I show that increases in the volatility of the investment
opportunity set make information acquisition more valuable.
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management industry in bad times than in good times.

In the recent pandemic turmoil, performance data show that the UK active equity funds

are outperforming their passive index rivals.38 My model suggests a state-dependent out-

come for the race between active and passive investment in terms of improving risk averse

investors’ welfare. Investigating the time-series of the relative performance between active

and passive investors and how it directs the capital flow can improve understanding of the

active management industry.

5.2 Public information and private information production

Another implication of the model is that the demand for additional information aid depends

on the informativeness of the endowed information set as well as the agent’s learning curve.

On the one hand, the model shows that information acquisition has a zero value if the

realized return is a sufficient statistic, which means that informative public signals crowd out

private information production. Whether or not public information crowds out managers’

or investors’ private information production has been discussed in the corporate disclosure

literature. For review analysis, I refer to Goldstein and Yang (2017).39

On the other hand, this paper shows that the demand for private signals is a function

of the agent’s belief, which is a path-dependent process that evolves in response to new

observations of the signals in her information set. The valuation, hence the motivation, of

information acquisition decreases when the agent’s belief about the expected return condi-

tional on information up to time t is relatively high. This means that if a public signal, for

example the past return, revises the agent’s prediction upwards, even though it is a noisy

signal, it could potentially crowd out private information production. On the contrary, if

the agent’s beliefs drop to the range where estimation risk is a first-order concern after

38‘Active funds have the edge on passives in the week of turmoil,’ Financial Times, 13 March 2020.
39Gao and Huang (2018) and Goldstein, Yang and Zuo (2020) study how modern information dissem-

ination technology affects outsiders’ information production by looking at the EDGAR system. Gao and
Huang (2018) show that after the full implementation of the EDGAR system, trades by investors with in-
ternet access become more informative, and the quality of sell-side analyst reports increases. They suggest
that public information encourages private information production (crowd-in effect). Goldstein, Yang and
Zuo (2020) examine the staggered implementation process of the EDGAR system and find a decrease in
the investment-to-price sensitivity. They suggest that the propagation of public information can crowd out
private information acquisition.
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observing a public signal, the demand to search for private information surges. In this case,

public signals encourage private information production (crowd-in effect). Therefore, the

model suggests the coexistence of the ‘crowd-in’ and ‘crowd-out’ effect. Furthermore, the

model predicts countercyclical information production: the intention of private information

production increases in bad times where learning is essential and decreases in good times.

Countercyclical private information production also implies a time-varying power of in-

formation (for example, corporate announcements and media) in explaining the investors’

investment, consumption and saving decisions. The response of investors to the same piece

of information differs across states. Bhattacharya et al. (2009) show that, although there

exists a positive relation between media coverage and internet IPOs in the 1990s, the me-

dia frenzy fails to explain the internet bubble. The media can only explain 2.9% of the

massive 1646% return difference between the internet and non-internet firms. This paper

provides theoretical support for the lack of explanatory power of information in extreme

circumstances. Examining how investors’ sentiment or belief influence the interaction be-

tween public information and private information production could be potentially inspiring

and provide insights for policymakers.

5.3 Investment and payout

The model also sheds light on the real effect of information and learning. In particular, it

suggests that information improves investment efficiency and mitigates underinvestment by

enhancing the agent’s understanding of the risky investment opportunity set. The impli-

cation is consistent with findings in the empirical literature that studies how information

acquisition affects investment decisions for firms, mutual funds and venture capitals (Coval

and Moskowitz (1999, 2001), Chen et al. (2010), Giroud (2013), and others). These papers

find that financial entities with information advantage are less bounded by estimation risks

and are able to make more efficient investment choices.

Estimation risk also induces the firm to decrease payout and smooth payout more com-

pared to the circumstance where information is perfect. Better information improves the

firm’s confidence in the valuation of future return, which greatly reduces the hedging and
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precautionary demands. As a result, payout is higher and more responsive to income shocks,

i.e. less smooth. This also means changes in payout and investment policy reflect the firm’s

learning path and confidence in future evaluaton. All these results suggest measures or

policies that reduce information collection barriers or costs could potentially mitigate un-

derinvestment and improve efficiency and welfare.40

6 Conclusion

The paper presents a generic model to understand the motivation and influence of informa-

tion acquisition. In particular, I study how the decision to acquire an extra signal affects

learning paths and the dynamics of investment and payout for a firm when information is

incomplete, and learning is imperfect. Improved learning through information acquisition

alleviates investment inefficiency, encourages higher payout and enhances the investors’ wel-

fare. However, the benefits can be overwhelmed by the cost incurred, distorting the agent’s

motivation to search for information. The benefits dominate when accurate inference is

more important. Thus, the value of information acquisition is state-dependent. Information

is more valuable when the investment environment is more volatile, when the firm is more

vulnerable to changes in the investment environment, and when the investors’ marginal

utility of payout is higher.

The model offers plausible explanations for otherwise puzzling observations; for example,

why investors invest in active funds despite the persistent underperformance after cost and

the widely available low-cost passive alternatives. It suggests that the ability to deliver

positive outcomes in states where information and consumption are needed the most (e.g.

in a recession) justifies the reason to engage in active information search. Additionally,

the model predicts a countercyclical production of private information, and sheds light

on the real effect of information and learning on firms’ investment and payout. It also

has implications for the time-series and cross-sectional variation in market reactions to

40Giroud (2003) shows that the opening of new airline routes increases the headquarter’s plant investment
by 8% – 9% and attribute the expansion of investment to reductions in the information gap. Chen et al.
(2020) use the introduction of the high-speed rail in China as an exogenous shock and find that reduction
in information acquisition cost results in greater information production, more accurate analyst forecasts
and better analyst recommendations.
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information, and suggests a state-dependent value of financial information intermediaries

and a time-varying explanatory power of information on financial behavior.

Admittedly, the model is agnostic about the supply side of information and the agent’s

capacity to process information. Future research could incorporate the supply-side limit and

demand-side constraint. For example, if investors can only choose signals from a limited

pool, how do the choices of information acquisition depend on their endowed information

set and information pool, and how do information providers tailor the supply to acquirers’

preferences? The corresponding welfare implications require an equilibrium framework in

future research. Finally, I abstract from many other market frictions, such as transaction

costs and short-selling constraints. It would be interesting to see how these frictions affect

the main results and what kind of empirical implications they generate about information

acquisition behavior.

Appendix

Proof of Proposition 1

The continuous-time Bayesian inference process relies on non-linear filtering theory (see

Lipster and Shiryaev (2001a, 2001b)). The prior belief is assumed to be Gaussian with

mean m0, and variance v0. Thus, conditional of the information set, the updating rules for

estimation mIit = E(θt|FIit ) and the variance vIit = E((θt − mt)
2|FIit ) are unique continous

FIit -measurable solutions to the following

dmIit = (a0 + a1m
Ii
t )dt + (σθ ◦ σIi + vIiBT

1 )(σIi ◦ σIi)−1(dξIit − µ1m
Ii
t dt) (37)

dvIit = 2a1v
Ii
t + (σθ ◦ σθ) + (σθ ◦ σIi + vIiBT

1 )(σIi ◦ σIi)−1(σθ ◦ σIi + vIiBT
1 )T

(38)

where

σI0 = σA and σI1 =

σA
σS

; BI01 = 1 and BI11 =

 1

b1
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σθ ◦ σI0 = σθA and σθ ◦ σI1 =
[
σθA σθS

]
;

σI0 ◦ σI0 = σ2
A and σI1 ◦ σI1 =

σ2
A σAS

σAS σ2
S

 ; dξI0t =
dAt
At

and dξI1t =

 dAt
At

dSt


That is, σθ ◦ σIi is the variance-covariance matrix of unknown drift and observations,

σIi ◦ σIi is the variance-covariance matrix of the observations, dξIit is the “surprise” from

new observation. Simplifying the expression leads to the corresponding updating

dmI0t = (a0 + a1m
I0
t )dt +

σθA + vI0t
σ2
A

ˆdZI0At (39)

dmI1t = (a0 + a1m
I1
t )dt + ζAt

ˆdZI1At + ζSt ˆdZSt with (40)

ζAt ≡
ζ1t − ρASζ2t

1 − ρ2
AS

and ζSt ≡
ζ2t − ρASζ1t

1 − ρ2
AS

(41)

ζ1t ≡
vI1t + σθA

σA
and ζ2t =

b1v
I1
t + σθS
σS

(42)

The evolutions of the estimation variances are given in (10) and (11). The stationary

variances are the solutions to (10) and (11) and are given in (43) and (44). Substituting the

stationary variances yields (6) and (7).

Proof of Proposition 2

The stationary variances are the solutions to Equations (10) and (11). Solving the two

quadratic equations and selecting the positive roots leads to

vI0 = a1σ
2
A − σθA + σ2

A

√
a2

1 − 2ρθAa1
σθ
σA

+
σ2
θ

σ2
A

(43)

vI1 =
σAσS

b2
1σ

2
A − 2b1ρASσAσS + σ2

S

[
a1(1 − ρ2

AS)σAσS + b1ρASσAσθ(ρθAρAS − ρθS) − ρθAσSσθ

+ ρASρθSσθσS + (1 − ρ2
AS)σAσS

√
HI1

(1 − ρ2
AS)σ2

Aσ
2
S

]
, where (44)

HI1 ≡ a2
1(1 − ρ2

AS)σ2
Aσ

2
S + 2a1σAσSσθ

(
b1σA(ρASρθA − ρθS) + σS(ρθSρAS − ρθA)

)
+ σ2

θ

(
b2

1(1 − ρ2
θA)σ2

A + 2b1σAσS(ρθAρθS − ρAS) + σ2
S(1 − ρ2

θS)
)
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By setting a1 = 0, the stationary variances for the 0-signal and 1-signal cases are

vI0 = −σθA + σ2
A

√
σ2
θ

σ2
A

= σθσA(1 − ρθA) (45)

vI0 =
σAσS

b2
1σ

2
A − 2b1ρASσAσS + σ2

S

[
b1ρASσAσθ(ρθAρAS − ρθS) + σSσθ(ρASρθS − ρθA)

(46)

+ (1 − ρ2
AS)σAσSσθ

√
b2

1(1 − ρ2
θA)σ2

A + 2b1σAσS(ρθAρθS − ρAS) + σ2
S(1 − ρ2

θS)

(1 − ρ2
AS)σ2

Aσ
2
S

]
(47)

To ensure the solutions exist and vI0 , vI1 ≥ 0, the following conditions have to be satisfied

b2
1σ

2
A − 2b1σAσSρAS + σ2

S − (b1σAρθA − σSρAS)2 > 0 (48)

1 − ρ2
AS − ρ2

θS − ρ2
θA + 2ρASρθAρθS ≤ 0 (49)

From Equation (47), one could see that with b1 6= 0, the signal not only helps to understand

the predictability of past realized return (through ρAS), but also provides an extra source

of information to learn about θ (through ρθS). Therefore, vI1 |b1 6= 0 ≤ vI1|b1 = 0. To prove

the proposition, we only need to show vI0 ≥ vI1 |b1 = 0. With b1 = 0, dSt = σSdZSt. The

variance of the estimation for the 1-signal case becomes

vI1|b1=0 = σAσθ

(
ρASρθS − ρθA −

√
(1 − ρ2

θS)(1 − ρ2
AS)
)

(50)

As ρASρθS < 1, comparing with (47), one could then show

vI1|b1 = 0 = vI0 − σAσθ[1 − ρASρθS +
√

(1 − ρ2
θS)(1 − ρ2

AS)] ≤ vI0

vI1|b1 6= 0 ≤ vI1|b1 = 0 ≤ vI0 (51)

�

Proof of Propositions 3 – 5

The optimization for the firm with information set Ii for i ∈ {0, 1, 2} constitutes an objective

38



function (16) and the intertemporal budget constrain (15) ((17) for the perfect information

case). By the dynamic programming presented in Dixit and Pindyck (1994), one can write

down the corresponding Hamilton–Jacobi–Bellman (HJB) equation as

ρJi(W,m)︸ ︷︷ ︸
required rate of return

= max
{ct,ωt}

u(c)︸︷︷︸
instantaneous utility flow

+ [(r + (m − α − r)ω)W − c]JiW +
1

2
σ2
Aω

2W 2JiWW︸ ︷︷ ︸
evolution of wealth

+ (a0 + a1m)Jim +
1

2
ΨiJimm︸ ︷︷ ︸

evoluation of estimation

+ (σθA + vIi)ωWJiWm︸ ︷︷ ︸
compound effect of wealth and estimation

(52)

where Ψi represents the information gain (reduction in the estimation error)

Ψ0 ≡
(σθA + vI1

σA

)2

, Ψ1 ≡ ξ2
A + ξ2

S + 2ρASξAξS and Ψ2 ≡ σ2
θ (53)

with ξA and ξS defined in (8). The underscripts represent the partial derivative of Ji with

respect to the state variables. The Ψ2 reflects the fact that with perfect learning, the agent

is able to identify the true value θt at each point of time. The information gain at each point

of time is Ψ2 = σ2
θ , which exactly offsets the total noise and makes vI2 = 0. Therefore, for

the perfect information case, mI2t = θt for all t.

The first order conditions are given by

c? = (JiW )−
1
γ (54)

ω? = −m − α − r

σ2
A

JiW
WJiWW

− σθA + vIi
σ2
A

JimW
WJiWW

(55)

Substituting the conjecture (18) into the first-order conditions and the HJB equation (52)

shows the main arguments in the propositions.

The optimality also requires the indirect utility function Ji(W,m) to be concave in

both W and m, that is, JiWW < 0 and Jimm < 0, which is verified numerically. The

concave and continuous utility function (power utility function) also suggests a diminishing

marginal utility with respect to both W and m, which means that limm→±∞ Jim = JiW =

0. Plugging the conjecture shows the boundary conditions in the propostions. Note that
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although the main discussion of the paper is based on θt that follows an arithmetic Brownian

motion, i.e. a1 = 0, the proof also holds for the case where θt follows a mean-reverting

process, i.e. a1 < 0.

As another useful benchmark, I also present the main results for the Merton (1969) case

where the θ is constant. With constant drift, the optimal consumption and investment

policy are: cMt = Wt(1 − γ)−
1
γ g
− 1
γ

M and ωM = θ−r
γσ2
A

. gM is a constant that satisfies the

following

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(θ − r)2

σ2
A

)
gM(θ) +

γ

1 − γ
(1 − γ)1− 1

γ gM(θ)1− 1
γ = 0 (56)

�

Derivation of the critical α

Take α01 as an example. α01 is defined to be the cutoff cost that makes the firm indifferent

between keeping the endowed information set I0 and having the expanded information set

I1. In other words, with α01, J0(m,Wt) = J1(m,Wt;α01). Therefore, given Wt and m,

g0(m) = g(m,α01). Substituting g0(m) into (24) (the ODE for g1(m,α01)), together with

(21) (the ODE for g0(m)), shows

(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(m − α01 − r)2

σ2
A

)
g0(m) +

γ

1 − γ
(1 − γ)1− 1

γ g0(m)1− 1
γ

+
(
a0 + a1m +

1 − γ

γ

(m − α01 − r)

σA

σθA + vI1

σA

)
g′0(m) +

1

2

(
ξ2
A + ξ2

S + 2ρASξAξS

)
g′′0(m)

+
1

2

1 − γ

γ

(σθA + vI1

σA

)2 g′0(m)2

g0(m)

=
(
r(1 − γ) − ρ +

1

2

1 − γ

γ

(m − r)2

σ2
A

)
g0(m) +

γ

1 − γ
(1 − γ)1− 1

γ g0(m)1− 1
γ

+
(
a0 + a1m +

1 − γ

γ

m − r

σA

σθA + vI0

σA

)
g′0(m) +

1

2

(σθA + vI0

σA

)2

g′′0(m)

+
1

2

1 − γ

γ

(σθA + vI0

σA

)2 g′0(m)2

g0(m)

Simplifing the above expression shows Equationn (36). α01 is therefore the solution to a
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quadratic function and can be written as

α01 =
(σθA + vI1)g′0(m) − (r − mt)g0(m) ±

√
∆

g0(m)
with (57)

∆ = [(σθA + vI1)g′0(m) − (r − mt)g0(m)]2 − 2g0(m)×[
(m − r)(vI0 − vI1)g′0(m) +

1

2
σ2
A

γ

1 − γ

[(σθA + vI0

σA

)2

− (ξA + ξS + 2ρASξAξS)
]
g′′0(m)

+
1

2

[
2σθA(vI0 − vI1) + (vI0)2 − (vI1)2

]g′0(m)2

g0(m)

]
> 0

For all m, the quadratic function has two roots, one positive and one negative. In the

numerical analysis, I choose α01(m) such that it is positive for a long position and negative

for a short position to ensure that it is an expense, not an income. This means that α01(m)

satisfies the following

sign(ω∗1(m,α = 0)) = sign(ω∗1(m,α)) (58)

With the same method, one can derive the following quadratic equation for α02

1

2
g0(m)α2

02 + [(r − m)g0(m) − σθAg
′
0(m)]α02 (59)

= (m − r)vI0g′0(m) − 1

2
σ2
Aγ(σ2

θ − (
σθA + vI0

σA
)2)g′′0(m) +

1

2
(2σθAv

I0 + vI
2
0 )
g′0(m)2

g0(m)

and similarly for α12.

Proof of Corollary 2 and 3

To study the total effect of changing estimation error on the payout, ∂c
∂v

, we can first look at

the total derivative of the indirect utility function J with respect to v for a given level of J

dJ

dv
|J = J =

∂g

∂v
W 1−γ + g(1 − γ)W−γ ∂W

∂v
= 0 ⇒ ∂W

∂v
|J = − 1

(1 − γ)g

∂g

∂v
W < 0 (60)
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Therefore, the payout substitution effect from change in the estimation error is given by

∂c

∂v
|J =

∂

∂v
(((1 − γ)g(m))−

1
γ )W + ((1 − γ)g(m))−

1
γ
∂W

∂v
|J

= −((1 − γ)g(m))−
1
γ
∂g

∂v

W

g

1

γ(1 − γ)
> 0 (61)

The wealth effect is negative:

dc

dv
− ∂c

∂v
|J =

∂

∂
((1 − γ)g(m))−

1
γW + ((1 − γ)g(m))−

1
γ
∂g

∂v

W

g

1

γ(1 − γ)
(62)

= ((1 − γ)g(m))−
1
γ
W

γg

∂g

∂v

γ

1 − γ
< 0 (63)

All else equal, the total effect on payout and aggregate welfare

dc

dv
=

∂

∂v
((1 − γ)g(m))−

1
γW < 0 and

dJ

dv
=

∂g

∂v
W 1− γ < 0 (64)

is negative, i.e increases in estimation error reduce the payout yield and investors’ welfare.

As m→ ±∞, the behavior of the investment, payout and investors’ welfare follows directly

from the boundary conditions.

�
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Figure 1: Optimal policies and welfare
Panels A, C, E, plot respectively the aggregate hedging demand(ωhi ), payout yield (ci/W ), and valuation of the

investment opportunity gi(m) as a function of the estimated rate of return m. The dashed lines represent the 0-signal

case, whereas the solid lines represent the 1-signal case and the dotted lines refer to the perfect information case.

The remaining panels present the comparisons between different information sets. Panels B, D, F plot respectively

the difference in the aggregate hedging demand (∆ωh), the ratio of payout yield (ci(m)/cj(m)), and the ratio of

the indirect utility function given total net worth (gi(m)/gj(m)) for different levels of estimated rate of return (m).

The solid line represents the comparison between the 1-signal and 0-signal case, while the dotted lines represent the

comparison between the perfect information and the 0-signal case and the dashed lines demonstrate the comparison

between the perfect information and the 1-signal case. Note that the comparison of aggregate investment is expressed

in an absolute term as the aggregate hedging demand can be zero, which makes the ratios spike up and the graph

uninformative. The figure is computed for the following parameter values (as in Table 1): σA = 0.14, a0 = 0.09, σθ =

0.05, b1 = 0.084, σS = 0.15, ρθA = −0.1, ρθS = 0.5, ρAS = 0.01, r = 0.05, ρ = 0.1 and γ = 2.
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Figure 2: Distortion effect of information cost on the investment and payout policies

The graphs plot the distortion effect of information cost on the investment and payout policy for different
estimated rates of return m and different levels of cost α. The top panels compare the optimal policies
between the costly (α 6= 0) case and the costless (α = 0) case: Panel A plots the difference in the risky
investment ω1(m;α) − ω1(m), while Panel B plots the ratio of the payout yield c1(m;α)/c1(m;α). The
bottom panels compare the optimal policies between the costly 1-signal case with the 0-signal case: Panel
C plots the comparison of the risky investment ω1(m;α)−ω0(m) and Panel D shows the comparison of the
payout c1(m;α)/c0(m). The benchmark case is α = 0 (thick solid line). The information cost (α) takes the
value of: 0.0015 (dotted line), 0.005 (dashed line), 0.01 (solid line).
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Figure 3: Distortion effect of information cost on the welfare

The graph plots the distortion of the information cost on the firm’s welfare by comparing the investors’
indirect utility function under the costly 1-signal case and the 0-signal case. It plots g1(m;α)/g0(m) as a
function of the estimated rate of return m for different levels of cost α. The benchmark case is α = 0 (thick
solid line). The information cost (α) takes the value of: 0.0015 (dotted line), 0.005 (dashed line), 0.01 (solid
line).

Figure 4: Value of information

The graphs show two measures of the information value for different estimated rates of return m. Panel

A plots the certainty equivalent of wealth δij(m), while Panel B plots the cutoff cost boundary αij(m).

The graphs are computed for the following parameter values (as in Table 1): σA = 0.14, a0 = 0.09, σθ =

0.05, b1 = 0.084, σS = 0.15, ρθA = −0.1, ρθS = 0.5, ρAS = 0.01, r = 0.05, ρ = 0.1 and γ = 2.
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Table 3: The cutoff cost boundary and changes in investors’ welfare

m

0.07 0.10 0.12 0.15 0.20 0.40 1.00 1.50

m-r 0.02 0.05 0.07 0.10 0.15 0.35 0.95 1.45
Panel A: Cutoff cost boundary αij(m)

α01(m) 0.006 0.007 0.007 0.008 0.009 0.010 0.005 0.003
α02(m) 0.037 0.042 0.045 0.049 0.055 0.060 0.032 0.021
α12(m) 0.032 0.037 0.039 0.043 0.047 0.050 0.027 0.018

Panel B: Improvement in welfare
gj(m)

gi(m)
− 1

g1(m)/g0(m)− 1 -0.043 -0.049 -0.052 -0.057 -0.064 -0.070 -0.020 -0.009
g2(m)/g0(m)− 1 -0.266 -0.292 -0.308 -0.329 -0.355 -0.347 -0.115 -0.052
g2(m)/g1(m)− 1 -0.233 -0.256 -0.270 -0.288 -0.310 -0.298 -0.096 -0.044

The table shows the estimation of the cutoff cost boundary from the model for different levels of expected

rate of return m. m−r is the expected rate of return net of the risk-free rate. Panel A shows the cutoff cost

αij(m), which represents the maximum cost (expressed as a proportion of total investment) the firm is willing

to bear in order to replace the information set Ii with Ij . Panel B shows the corresponding changes in the

investors’ welfare gj(m)/gi(m)−1. The table is computed for the following parameter values (as in Table 1):

σA = 0.14, a0 = 0.09, σθ = 0.05, b1 = 0.084, σS = 0.15, ρθA = −0.1, ρθS = 0.5, ρAS = 0.01, r = 0.05, ρ = 0.1

and γ = 2.
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